Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
mBio ; 11(3)2020 05 22.
Article in English | MEDLINE | ID: covidwho-1723548

ABSTRACT

Due to the urgent need of a therapeutic treatment for coronavirus (CoV) disease 2019 (COVID-19) patients, a number of FDA-approved/repurposed drugs have been suggested as antiviral candidates at clinics, without sufficient information. Furthermore, there have been extensive debates over antiviral candidates for their effectiveness and safety against severe acute respiratory syndrome CoV 2 (SARS-CoV-2), suggesting that rapid preclinical animal studies are required to identify potential antiviral candidates for human trials. To this end, the antiviral efficacies of lopinavir-ritonavir, hydroxychloroquine sulfate, and emtricitabine-tenofovir for SARS-CoV-2 infection were assessed in the ferret infection model. While the lopinavir-ritonavir-, hydroxychloroquine sulfate-, or emtricitabine-tenofovir-treated group exhibited lower overall clinical scores than the phosphate-buffered saline (PBS)-treated control group, the virus titers in nasal washes, stool specimens, and respiratory tissues were similar between all three antiviral-candidate-treated groups and the PBS-treated control group. Only the emtricitabine-tenofovir-treated group showed lower virus titers in nasal washes at 8 days postinfection (dpi) than the PBS-treated control group. To further explore the effect of immune suppression on viral infection and clinical outcome, ferrets were treated with azathioprine, an immunosuppressive drug. Compared to the PBS-treated control group, azathioprine-immunosuppressed ferrets exhibited a longer period of clinical illness, higher virus titers in nasal turbinate, delayed virus clearance, and significantly lower serum neutralization (SN) antibody titers. Taken together, all antiviral drugs tested marginally reduced the overall clinical scores of infected ferrets but did not significantly affect in vivo virus titers. Despite the potential discrepancy of drug efficacies between animals and humans, these preclinical ferret data should be highly informative to future therapeutic treatment of COVID-19 patients.IMPORTANCE The SARS-CoV-2 pandemic continues to spread worldwide, with rapidly increasing numbers of mortalities, placing increasing strain on health care systems. Despite serious public health concerns, no effective vaccines or therapeutics have been approved by regulatory agencies. In this study, we tested the FDA-approved drugs lopinavir-ritonavir, hydroxychloroquine sulfate, and emtricitabine-tenofovir against SARS-CoV-2 infection in a highly susceptible ferret infection model. While most of the drug treatments marginally reduced clinical symptoms, they did not reduce virus titers, with the exception of emtricitabine-tenofovir treatment, which led to diminished virus titers in nasal washes at 8 dpi. Further, the azathioprine-treated immunosuppressed ferrets showed delayed virus clearance and low SN titers, resulting in a prolonged infection. As several FDA-approved or repurposed drugs are being tested as antiviral candidates at clinics without sufficient information, rapid preclinical animal studies should proceed to identify therapeutic drug candidates with strong antiviral potential and high safety prior to a human efficacy trial.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antiviral Agents/pharmacology , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/virology , Disease Models, Animal , Female , Ferrets , Humans , Hydroxychloroquine/therapeutic use , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , United States , United States Food and Drug Administration , Viral Load
3.
PLoS Pathog ; 17(12): e1010092, 2021 12.
Article in English | MEDLINE | ID: covidwho-1581718

ABSTRACT

The development of safe and effective vaccines to prevent SARS-CoV-2 infections remains an urgent priority worldwide. We have used a recombinant vesicular stomatitis virus (rVSV)-based prime-boost immunization strategy to develop an effective COVID-19 vaccine candidate. We have constructed VSV genomes carrying exogenous genes resulting in the production of avirulent rVSV carrying the full-length spike protein (SF), the S1 subunit, or the receptor-binding domain (RBD) plus envelope (E) protein of SARS-CoV-2. Adding the honeybee melittin signal peptide (msp) to the N-terminus enhanced the protein expression, and adding the VSV G protein transmembrane domain and the cytoplasmic tail (Gtc) enhanced protein incorporation into pseudotype VSV. All rVSVs expressed three different forms of SARS-CoV-2 spike proteins, but chimeras with VSV-Gtc demonstrated the highest rVSV-associated expression. In immunized mice, rVSV with chimeric S protein-Gtc derivatives induced the highest level of potent neutralizing antibodies and T cell responses, and rVSV harboring the full-length msp-SF-Gtc proved to be the superior immunogen. More importantly, rVSV-msp-SF-Gtc vaccinated animals were completely protected from a subsequent SARS-CoV-2 challenge. Overall, we have developed an efficient strategy to induce a protective response in SARS-CoV-2 challenged immunized mice. Vaccination with our rVSV-based vector may be an effective solution in the global fight against COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Vesicular stomatitis Indiana virus/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , Chlorocebus aethiops , Humans , Immunization , Mice , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Viral Proteins/genetics , Viral Proteins/immunology
4.
Prog Transplant ; 31(4): 381-384, 2021 12.
Article in English | MEDLINE | ID: covidwho-1480394

ABSTRACT

Telehealth plays a critical role in the response of healthcare organizations during the COVID-19 pandemic. While telemedicine offers a real-time patient-provider encounter, the inability to obtain vital signs during virtual visits is a potential limitation. Remote patient monitoring (RPM) uses portable devices in the patient's home to collect and electronically transmit physiological data to clinicians. Two kidney transplant recipients were enrolled in RPM in their immediate post-transplant period. Real-time monitoring of their physiological data at home through the RPM in combination with the ability to titrate medications resulted in normalization of the blood pressure and blood glucose measurements by six weeks. Our initial experience demonstrates that RPM is feasible and effective in the post-transplant period and can expand care opportunities on the remote care model. This is more relevant than ever as remote monitoring can facilitate the care of COVID-19-positive transplant patients who require close monitoring while isolated at home.


Subject(s)
COVID-19 , Home Care Services , Kidney Transplantation , Telemedicine , Delivery of Health Care , Humans , Monitoring, Physiologic , Pandemics , SARS-CoV-2
6.
Emerg Microbes Infect ; 10(1): 152-160, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1012800

ABSTRACT

Cases of laboratory-confirmed SARS-CoV-2 reinfection have been reported in a number of countries. Further, the level of natural immunity induced by SARS-CoV-2 infection is not fully clear, nor is it clear if a primary infection is protective against reinfection. To investigate the potential association between serum antibody titres and reinfection of SARS-CoV-2, ferrets with different levels of NAb titres after primary SARS-CoV-2 infection were subjected to reinfection with a heterologous SARS-CoV-2 strain. All heterologous SARS-CoV-2 reinfected ferrets showed active virus replication in the upper respiratory and gastro-intestinal tracts. However, the high NAb titre group showed attenuated viral replication and rapid viral clearance. In addition, direct-contact transmission was observed only from reinfected ferrets with low NAb titres (<20), and not from other groups. Further, lung histopathology demonstrated the presence of limited inflammatory regions in the high NAb titre groups compared with control and low NAb groups. This study demonstrates a close correlation between a low NAb titre and SARS-CoV-2 reinfection in a recovered ferret reinfection model.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/transmission , Reinfection/immunology , SARS-CoV-2/immunology , Animals , COVID-19/virology , Chlorocebus aethiops , Ferrets , Vero Cells
8.
Cell Host Microbe ; 27(5): 704-709.e2, 2020 05 13.
Article in English | MEDLINE | ID: covidwho-34929

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China and rapidly spread worldwide. To prevent SARS-CoV-2 dissemination, understanding the in vivo characteristics of SARS-CoV-2 is a high priority. We report a ferret model of SARS-CoV-2 infection and transmission that recapitulates aspects of human disease. SARS-CoV-2-infected ferrets exhibit elevated body temperatures and virus replication. Although fatalities were not observed, SARS-CoV-2-infected ferrets shed virus in nasal washes, saliva, urine, and feces up to 8 days post-infection. At 2 days post-contact, SARS-CoV-2 was detected in all naive direct contact ferrets. Furthermore, a few naive indirect contact ferrets were positive for viral RNA, suggesting airborne transmission. Viral antigens were detected in nasal turbinate, trachea, lungs, and intestine with acute bronchiolitis present in infected lungs. Thus, ferrets represent an infection and transmission animal model of COVID-19 that may facilitate development of SARS-CoV-2 therapeutics and vaccines.


Subject(s)
Coronavirus Infections/pathology , Coronavirus Infections/transmission , Ferrets , Pneumonia, Viral/pathology , Pneumonia, Viral/transmission , Animals , Antibodies, Viral/immunology , Betacoronavirus/immunology , COVID-19 , Disease Models, Animal , Pandemics , SARS-CoV-2 , Viral Vaccines/immunology , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL